Travel Time on a Wavy Path in an Inclined Plane: A Theoretical and Numerical Review

Penulis

  • Rodika Utama Universitas Ahmad Dahlan

DOI:

https://doi.org/10.24252/al-khazini.v5i2.60867

Kata Kunci:

Wavy Path, Inclined Plane, Energy Conservation, Calculus of Variations, Travel Time

Abstrak

This study investigates the influence of path geometry on the travel time of an object on a frictionless inclined plane, focusing on the comparison between straight and undulating (wave-like) paths. Using the principles of energy conservation and variational calculus, a mathematical expression for the travel time along a sinusoidal path is derived. Although the straight path is geometrically the shortest, the analysis shows that certain wave-shaped trajectories can yield a shorter travel time. Numerical evaluations on various amplitude and frequency parameters reveal their critical role in determining efficiency. This work reinforces the relevance of the Brachistochrone principle in theoretical physics education and demonstrates how simple numerical approaches can be utilized to explore optimal trajectories.

Unduhan

Data unduhan belum tersedia.

Referensi

Arikunto, S. (1998). Prosedur Penelitian: Suatu Pendekatan Praktik. Jakarta: Rineka Cipta.

Ary, D., Jacobs, L. C., & Razavieh, A. (1982). Pengantar Penelitian Pendidikan. (Terj. Arief Furchan). Surabaya: Usaha Nasional.

Bernoulli, J. (1956). The Brachistochrone Problem. Acta Eruditorum, 1696. (Reprinted in Mathematical Papers of Johann Bernoulli, Springer).

Gelfand, I. M., & Fomin, S. V. (2000). Calculus of Variations. New York: Dover Publications.

Goldstein, H., Poole, C. & Safko, J. (2002). Classical Mechanics (3rd ed.). San Francisco: Addison-Wesley.

Halliday, D., Resnick, R., & Walker, J. (2014). Fundamentals of Physics (10th ed.). Hoboken: John Wiley & Sons.

Handhika, J., Cari, C., & Sunarno, W. (2020). The Implementation of Virtual Laboratory to Enhance Students' Conceptual Understanding in Physics Learning. Journal of Physics: Conference Series, 1567(2), 022007. https://doi.org/10.1088/1742-6596/1567/2/022007

Landau, L. D., & Lifshitz, E. M. (1976). Mechanics (Vol. 1 of Course of Theoretical Physics). Oxford: Pergamon Press.

Lemoine, D., & Dejonghe, A. (2021). The Brachistochrone Problem and Educational Simulations: A Computational Approach. The Physics Teacher, 59(9), 674–676. https://doi.org/10.1119/10.0006581

Morin, D. (2007). Introduction to Classical Mechanics: With Problems and Solutions. Cambridge: Cambridge University Press.

Pelesko, J. A., & Bernstein, D. H. (2003). Modeling MEMS and NEMS. London: Chapman and Hall/CRC. (Bab awal memuat pembahasan Brachistochrone sebagai studi kasus kalkulus variasi)

Rachmatullah, A., Wiryawan, R. Y., & Sari, N. P. (2021). Integration of Computational Physics in High School Curriculum: A Study of Students’ Reasoning and Conceptual Understanding. Journal of Physics: Conference Series, 1806(1), 012012. https://doi.org/10.1088/1742-6596/1806/1/012012

Rakhman, A., & Utami, N. (2023). Pengembangan Media Simulasi Interaktif Berbasis Python untuk Konsep Gerak Lurus. Jurnal Pendidikan Fisika Indonesia, 19(1), 44–51.

https://doi.org/10.15294/jpfi.v19i1.61675

Susilawati, T., & Ardiansyah, R. (2021). Penggunaan Kalkulus Variasi dalam Penyelesaian Permasalahan Gerak Minimal. Jurnal Riset Pendidikan Matematika, 8(1), 21–28.

https://doi.org/10.23917/jrpm.v8i1.12345

Symon, K. R. (1971). Mechanics (3rd ed.). Reading, MA: Addison-Wesley.

Taylor, J. R. (2005). Classical Mechanics. Sausalito: University Science Books.

Wati, S. N., & Supeno, S. (2022). Penerapan Model Pembelajaran STEM Berbasis Pemodelan Fisika pada Materi Gerak Dinamis. Jurnal Pendidikan Fisika Indonesia, 18(1), 45–52. https://doi.org/10.15294/jpfi.v18i1.55678

Widodo, S. A. (2022). Integrasi Simulasi Numerik dalam Pembelajaran Fisika Berbasis Masalah. Jurnal Pendidikan Sains Indonesia, 10(2), 101–109. https://doi.org/10.24815/jpsi.v10i2.24587

Unduhan

Diterbitkan

2025-10-17

Cara Mengutip

Utama, R. (2025). Travel Time on a Wavy Path in an Inclined Plane: A Theoretical and Numerical Review. Al-Khazini, 5(2), 69–76. https://doi.org/10.24252/al-khazini.v5i2.60867

Terbitan

Bagian

Artikel