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Abstract

In this paper we propose two ways to deal with the imbalanced data classification problem using

random forest. One is based on cost sensitive learning, and the other is based on a sampling technique.

Performance metrics such as precision and recall, false positive rate and false negative rate,F-measure

and weighted accuracy are computed. Both methods are shown to improve the prediction accuracy of

the minority class, and have favorable performance compared to the existing algorithms.

1 Introduction

Many practical classification problems areimbalanced; i.e., at least one of the classes constitutes only a

very small minority of the data. For such problems, the interest usually leans towards correct classification

of the “rare” class (which we will refer to as the “positive” class). Examples of such problems include fraud

detection, network intrusion, rare disease diagnosing, etc. However, the most commonly used classification

algorithms do not work well for such problems because they aim to minimize the overall error rate, rather

than paying special attention to the positive class. Several researchers have tried to address the problem

in many applications such as fraudulent telephone call detection (Fawcett & Provost, 1997), information

retrieval and filtering (Lewis & Catlett, 1994), diagnosis of rare thyroid deceases (Murphy & Aha, 1994)

and detection of oil spills from satellite images (Kubat et al., 1998).

There are two common approaches to tackle the problem of extremely imbalanced data. One is based

on cost sensitive learning: assigning a high cost to misclassification of the minority class, and trying to

minimize the overall cost. Domingos (1999) and Pazzani et al. (1994) are among these. The other approach

is to use a sampling technique: Either down-sampling the majority class or over-sampling the minority class,

or both. Most research has been focused on this approach. Kubat et al. (1997) develop a system, SHRINK,

for imbalanced classification. SHRINK labels a mixed region as positive (minority class) regardless of

whether the positive examples prevail in the region or not. Then it searches for the best positive region.

They made comparisons to C4.5 and 1-NN, and show that SHRINK has improvement in most cases. Kubat
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& Matwin (1997) uses the one-sided sampling technique to selectively down sample the majority class.

Ling & Li (1998) over-sample the minority class by replicating the minority samples so that they attain the

same size as the majority class. Over-sampling does not increase information; however by replication it

raises the weight of the minority samples. Chawla et al. (2002) combine over-sampling and down-sampling

to achieve better classification performance than simply down-sampling the majority class. Rather than

over-sampling with replacement, they create synthetic minority class examples to boost the minority class

(SMOTE). They compared SMOTE plus the down-sampling technique with simple down-sampling, one-

sided sampling and SHRINK, and showed favorable improvement. Chawla et al. (2003) apply the boosting

procedure to SMOTE to further improve the prediction performance on the minority class and the overall

F-measure.

We propose two ways to deal with the problem of extreme imbalance, both based on the random Forest

(RF) algorithm (Breiman, 2001). One incorporates class weights into the RF classifier, thus making it cost

sensitive, and it penalizes misclassifying the minority class. The other combines the sampling technique

and the ensemble idea. It down-samples the majority class and grows each tree on a more balanced data

set. A majority vote is taken as usual for prediction. We compared the prediction performance with one-

sided sampling, SHRINK, SMOTE, and SMOTEBoost on the data sets that the authors of those techniques

studied. We show that both of our methods have favorable prediction performance.

2 Methodology

2.1 Random Forest

Random forest (Breiman, 2001) is an ensemble of unpruned classification or regression trees, induced from

bootstrap samples of the training data, using random feature selection in the tree induction process. Predic-

tion is made by aggregating (majority vote for classification or averaging for regression) the predictions of

the ensemble. Random forest generally exhibits a substantial performance improvement over the single tree

classifier such as CART and C4.5. It yields generalization error rate that compares favorably to Adaboost,

yet is more robust to noise. However, similar to most classifiers, RF can also suffer from the curse of learn-

ing from an extremely imbalanced training data set. As it is constructed to minimize the overall error rate, it

will tend to focus more on the prediction accuracy of the majority class, which often results in poor accuracy

for the minority class. To alleviate the problem, we propose two solutions: balanced random forest (BRF)

and weighted random forest (WRF).

2.2 Balanced Random Forest

As proposed in Breiman (2001), random forest induces each constituent tree from a bootstrap sample of the

training data. In learning extremely imbalanced data, there is a significant probability that a bootstrap sample

contains few or even none of the minority class, resulting in a tree with poor performance for predicting

the minority class. A näıve way of fixing this problem is to use a stratified bootstrap; i.e., sample with
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replacement from within each class. This still does not solve the imbalance problem entirely. As recent

research shows (e.g., Ling & Li (1998),Kubat & Matwin (1997),Drummond & Holte (2003)), for the tree

classifier, artificially making class priors equal either by down-sampling the majority class or over-sampling

the minority class is usually more effective with respect to a given performance measurement, and that down-

sampling seems to have an edge over over-sampling. However, down-sampling the majority class may result

in loss of information, as a large part of the majority class is not used. Random forest inspired us to ensemble

trees induced from balanced down-sampled data. The Balanced Random Forest (BRF) algorithm is shown

below:

1. For each iteration in random forest, draw a bootstrap sample from the minority class. Randomly draw

the same number of cases, with replacement, from the majority class.

2. Induce a classification tree from the data to maximum size, without pruning. The tree is induced with

the CART algorithm, with the following modification: At each node, instead of searching through all

variables for the optimal split, only search through a set ofmtry randomly selected variables.

3. Repeat the two steps above for the number of times desired. Aggregate the predictions of the ensemble

and make the final prediction.

2.3 Weighted Random Forest

Another approach to make random forest more suitable for learning from extremely imbalanced data follows

the idea of cost sensitive learning. Since the RF classifier tends to be biased towards the majority class, we

shall place a heavier penalty on misclassifying the minority class. We assign a weight to each class, with the

minority class given larger weight (i.e., higher misclassification cost). The class weights are incorporated

into the RF algorithm in two places. In the tree induction procedure, class weights are used to weight

the Gini criterion for finding splits. In the terminal nodes of each tree, class weights are again taken into

consideration. The class prediction of each terminal node is determined by “weighted majority vote”; i.e.,

the weighted vote of a class is the weight for that class times the number of cases for that class at the

terminal node. The final class prediction for RF is then determined by aggregatting the weighted vote from

each individual tree, where the weights are average weights in the terminal nodes. Class weights are an

essential tuning parameter to achieve desired performance. The out-of-bag estimate of the accuracy from

RF can be used to select weights. This method, Weighted Random Forest (WRF), is incorporated in the

present version of the software.

3 Experiments

3.1 Data set

We experimented with 6 data sets, and they are summarized in table 1. These data sets are highly imbalanced

and have been studied before by various researchers with different methods. We try to compare our proposed
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methods with those existing methods, and we will also compare the performance of WRF and BRF. Here is

the description of the data.

Dataset Number of variables Number of cases % Minority class

Oil 50 937 4.4

Mammography 6 11183 2.3

Satimage 36 6435 9.7

Hypothyroid 24 2520 4.8

Euthyroid 24 2640 9.1

KDD thrombin 100 2543 7.6

Table 1: Data Set summary

1. The oil data set was first studied by Kubat & Matwin (1997) with their method, one-sided sampling.

Kubat et al. (1998) further studied this dataset and provides a new method, SHRINK. Chawla et al.

(2002) compared their methods SMOTE with One-sided sampling and SHRINK on the same dataset.

This dataset has 41 oil slick samples and 896 non-slick samples.

2. The mammography data set from Woods et al. (1993) has 10,923 negative samples and only 260

positive samples. This dataset was studied with the methods SMOTE and SMOTEboost in Chawla

et al. (2002) and Chawla et al. (2003), respectively.

3. The Hypothyroid and Euthyroid data sets (Blake & Merz, 1998) are studied by Kubat et al. (1997)

with SHRINK, C4.5 and 1-NN. We follow Kubat et al. (1997) and deleted all cases with missing

age and sex and removed the attribute TBGmeasured. From Euthyroid, we randomly selected 240

positives and 2400 negatives; from hypothyroid, we select 120 positive and 2400 negatives.

4. The satimage data set (Blake & Merz, 1998) originally has six classes. Chawla et al. (2003) chose the

smallest class as the minority class and collapsed the rest of the classes into one, and use the modified

dataset to evaluate the performance of SMOTE and SMOTEBoost.

5. The KDD Cup 2001 thrombin data set was originally split into training and test components. We

combine the training set and test set together, and we have 2543 negative samples and 190 positive

samples. The original data set has 139,351 binary features, and we use maximum entropy to select

100 features for our analysis.

3.2 Performance Measurement

In learning extremely imbalanced data, the overall classification accuracy is often not an appropriate measure

of performance. A trivial classifier that predicts every case as the majority class can still achieve very high
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accuracy. We use metrics such as true negative rate, true positive rate, weighted accuracy,G-mean, precision,

recall, andF-measure to evaluate the performance of learning algorithms on imbalanced data. These metrics

have been widely used for comparison. All the metrics are functions of the confusion matrix as shown in

Table 2. The rows of the matrix are actual classes, and the columns are the predicted classes. Based on

Table 2, the performance metrics are defined as:

True Negative Rate(Acc−) =
TN

TN+FP

True Positive Rate(Acc+) =
TP

TP+FN

G-mean = (Acc−×Acc+)1/2

Weighted Accuracy = βAcc+ +(1−β)Acc−

Precision =
TP

TP+FP

Recall =
TP

TP+FN
= Acc+

F-measure =
2×Precision×Recall

Precision+Recall

Predicted Positive Class Predicted Negative Class

Actual Positive class TP (True Positive) FN (False Negative)

Actual Negative class FP (False Positive) TN (True Negative)

Table 2: Confusion matrix.

For any classifier, there is always a trade off between true positive rate and true negative rate; and the

same applies for recall and precision. In the case of learning extremely imbalanced data, quite often the rare

class is of great interest. In many applications such as drug discovery and disease diagnosis, it is desirable

to have a classifier that gives high prediction accuracy over the minority class (Acc+), while maintaining

reasonable accuracy for the majority class (Acc−). Weighted Accuracy is often used in such situations.

Weights can be adjusted to suit the application. Here we use equal weights for both true positive rate and

true negative rate; i.e.,β equals 0.5. The Geometric Mean (G-mean) is used in Kubat et al. (1997) to assess

the performance of their methods. Precision, recall andF-measure are commonly used in the information

retrieval area as performance measures. We will adopt all these measurements to compare our methods with

published results. Ten-fold cross-validations were carried out to obtain all the performance metrics.

We also use the ROC curve to compare the performance of BRF and WRF. The ROC curve is a graphical

representation of the trade off between the false negative and false positive rates for every possible cut off.

For BRF, we can change the votes cutoff for final prediction: as we raise the cutoff for the minority class,

we can achieve a lower true positive rate and a higher true negative rate, thus yielding a set of points on the

ROC diagram. For WRF, we can tune the class weight for final prediction: as we raise the minority class
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Methods Acc+ (Recall) Acc− Precision F-measure G-mean Wt. Accuracy

One-sided Sampling 76.0 86.6 20.53 32.33 81.13 81.3

SHRINK 82.5 60.9 8.85 15.99 70.88 71.7

SMOTE 500% + Down 50% 89.5 78.9 16.37 27.68 84.03 84.2

SMOTE 500% + Down 100% 78.3 68.7 10.26 18.14 73.34 73.5

BRF cutoff=.5 73.2 91.6 28.57 41.10 81.19 82.4

BRF cutoff=.6 85.4 84.0 19.66 31.96 84.70 84.7

BRF cutoff=.7 92.7 72.2 13.24 23.17 81.18 82.5

WRF weight=41:896 92.7 82.4 19.39 32.07 87.40 87.6

Table 3: Performance comparison on oil spill data set

weight, the misclassification cost of the minority class goes up, and we get a higher true positive rate and a

lower true negative rate, thus yielding a set of points on the ROC diagram.

3.3 Performance Comparison

Table 3 compares the performance of different algorithms on the oil spill data. Chawla et al. (2002) provides

a comparison of One-side Sampling, SHRINK and SMOTE with down-sampling based on precision, recall

andF-measure. We furthermore compute the other metrics from their original numbers. As stated in Chawla

et al. (2002), SMOTE with down-sampling achieves results comparable with SHRINK’s, and in some cases

better results, but shows no clear improvement over One-sided selection. From table 3, apparently both BRF

and WRF show great improvement over SHRINK based on all metrics (G-mean, weighted accuracy andF-

measure). BRF with a cutoff of 0.5 has comparable performance with One-sided Sampling based onG-mean

and weighted accuracy, and a better result inF-measure. WRF using a weight equal to the class proportion

has a comparable result inF-measure, but favorable results inG-mean and weighted accuracy. BRF with

a cutoff of 0.6 and WRF both achieve better performance than SMOTE 500% with 50% downsampling,

which is best among the results for SMOTE. We can conclude that for the oil spill data both BRF and WRF

with proper parameters outperform the published results.

Table 4 compares the performance of BRF and WRF with SMOTE and SMOTEboost on the mam-

mography data. WRF shows improvement over both SMOTE and SMOTEBoost based on theF-measure,

G-mean and weighted accuracy. BRF has better perfomance than SMOTE, while comparing with SMOTE-

Boost, it has a betterG-mean and weighted accuracy, but worseF-measure.

Table 5 compares the performance of BRF and WRF with SMOTE and SMOTEboost on the satimage

data. Both BRF and WRF are superior to SMOTE and Standard RIPPER inF-measure andG-mean. BRF

and WRF are better than SMOTEBoost inG-mean, but worse inF-measure. Note that, compared to the

6



Method Acc+ (Recall) Acc− Precision F-measure G-mean Wt. Accuracy

Standard RIPPER 48.12 99.61 74.68 58.11 69.23 73.87

SMOTE 100 58.04 99.26 64.96 61.31 75.90 78.65

SMOTE 200 62.16 99.04 60.53 60.45 78.46 80.58

SMOTE-Boost 100 61.73 99.54 76.59 68.36 78.39 80.63

SMOTE-Boost 200 62.63 99.50 74.54 68.07 78.94 81.07

BRF cutoff=.2 70.00 98.98 62.12 65.83 83.24 84.49

BRF cutoff=.3 76.54 98.21 50.51 60.86 86.70 87.38

WRF weight=2:1 65.38 99.57 78.34 71.28 80.68 82.48

WRF weight=3:1 72.69 99.25 69.74 71.18 84.94 85.97

Table 4: Performance comparison on mammography data set

other methods, BRF and WRF tend to focus more on the accuracy of the minority class while trading off

accuracy in the majority class.

Method Acc+ (Recall) Acc− Precision F-measure G-mean Wt. Accuracy

Standard RIPPER 47.43 97.59 67.92 55.50 68.03 72.51

SMOTE 100 65.17 94.46 55.88 59.97 78.46 79.82

SMOTE 200 74.89 91.29 48.08 58.26 82.68 83.09

SMOTE-Boost 100 63.88 98.02 77.71 70.12 79.13 80.95

SMOTE-Boost 300 67.87 97.25 72.68 70.19 81.24 82.56

BRF cutoff=.3 67.09 95.97 64.22 65.62 80.24 81.53

BRF cutoff=.4 77.00 93.56 56.31 65.05 84.88 85.28

WRF weight= 69.33 96.71 69.44 69.38 81.88 83.02

WRF weight= 77.48 94.56 60.55 67.98 85.60 86.02

Table 5: Performance comparison on Satimage data set

Tables 6 and 7 compare the performance of BRF and WRF with SHRINK on the hypothyroid and

euthyroid data sets from the UCI repository. Kubat et al. (1997) provides a comparison among C4.5, 1-NN

and SHRINK; they useG-mean to evaluate the performance. Clearly based onG-mean, both BRF and WRF

outperform SHRINK, C4.5 and 1-NN. We can hardly tell the difference between BRF and WRF. BRF is

slightly better than WRF inG-mean and weighted accuracy, but worse inF-measure.

In the tables above, we have shown that WRF and BRF have favorable improvement over existing

methods. However, between WRF and BRF, we can not tell clearly which is superior. We will use ROC

analysis to further investigate these two methods.

7



Method Acc+ (Recall) Acc− Precision F-measure G-mean Wt. Accuracy

C4.5 . . . . 93.6 .

1-NN . . . . 88.9 .

SHRINK . . . . 95.0 .

BRF cutoff=.5 95.0 98.6 63.3 76.0 96.8 96.8

WRF weight=1:5 93.3 99.0 83.6 88.2 96.1 96.2

Table 6: Performance comparison on Hypothyroid data set

Method Acc+ (Recall) Acc− Precision F-measure G-mean Wt. Accuracy

C4.5 . . . . 88.2 .

1-NN . . . . 60.8 .

SHRINK . . . . 74.0 .

BRF cutoff=.5 91.3 97.1 75.8 82.8 94.1 94.2

WRF weight=1:5 90.0 98.0 81.5 85.5 93.9 94.0

Table 7: Performance comparison on Euthyroid data set

Figures 1–5 compare WRF and BRF using ROC curves on the data sets. From the figures, we can see

that the ROC curve of both WRF and BRF are very close. WRF seems to be slightly superior than BRF on

the oil spill and mammography dat a sets and vice versa on the euthyroid and Thrombin data sets. From

several other data sets we have experimented with, we do not see a clear winner.

4 Conclusion

We presented two ways of learning imbalanced data based on random forest. Weighted Random Forest

put more weights on the minority class, thus penalizing more heavily on misclassifying the minority class.

Balanced Random Forest combines the down sampling majority class technique and the ensemble learning

idea, artificially altering the class distribution so that classes are represented equally in each tree.

From the experiments on various data sets, we can conclude that both Weighted RF and Balanced RF

have performance superior to most of the existing techniques that we studied. Between WRF and BRF,

however, there is no clear winner. By the construction of BRF and WRF, we found that BRF is computa-

tionally more efficient with large imbalanced data, since each tree only uses a small portion of the training

set to grow, while WRF needs to use the entire training set. WRF assigns a weight to the minority class,

possibly making it more vulnerable to noise (mis-labeled class) than BRF. A majority case that is mislabled

as belonging to the minority class may have a larger effect on the prediction accuracy of the majority class

in WRF than in BRF. Further study may be carried out to see how these two methods perform under label

noise.
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Figure 1: Mamo ROC
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