Grouping of Regencies/Cities In West Sumatra Province Based On Economic Development Indicators Using The Self-Organizing Maps (SOM) Algorithm

Penulis

  • Wiwil Dzil Izzatil Universitas Negeri Padang
  • Chairina Wirdiastuti Universitas Negeri Padang
  • Syafriandi Universitas Negeri Padang

DOI:

https://doi.org/10.24252/msa.v13i2.57741

Kata Kunci:

Economic Development, Clustering, Self-Organizing Maps

Abstrak

Economic development is an important aspect in improving the standard of living of the community. To measure economic development progress in a region, relevant indicators are needed, one of which is Gross Regional Domestic Product (GRDP) per capita. In West Sumatra Province, there are disparities in RDP per capita between regions. Therefore, clustering is necessary to assist local governments in determining development priorities, formulating more targeted development policies, and allocating resources efficiently. This study aims to cluster West Sumatra regions using the Self-Organizing Maps algorithm based on economic development indicators. The analysis results identified three clusters: Cluster 1 consists of 6 districts/cities categorized as having moderate economic development, Cluster 2 includes 7 districts/cities with high economic development, and Cluster 3 consists of 6 other districts/cities categorized as having low economic development.

Referensi

M. Hasan and M. Azis, Pembangunan Ekonomi & Pemberdayaan Masyarakat. 2018. [Online]. Available: http://eprints.unm.ac.id/10706/1/Buku pembangunan ekonomi contoh fix.pdf

L. Arsyad, “Ekonomi Pembangunan dan Pembangunan Ekonomi,” Ekon. Pembang. Berkelanjutan, vol. 05, no. 01, pp. 1–37, 2015.

A. Novelia and A. Kinanti, “Pengelompokkan Kabupaten/Kota Berdasarkan Indikator Produk Domestik Regional Bruto (PDRB) Menggunakan Metode Self Organizing Map,” Bul. Ilm. Math. Stat dan Ter., vol. 13, no. 3, pp. 411–418, 2024.

BPS Sumatera Barat, “Sumatera Barat Dalam Angka 2023,” Ber. Resmi Badan Pus. Stat., vol. 54, 2023.

T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no. 1–3, pp. 1–6, 1998, doi: 10.1016/S0925-2312(98)00030-7.

I. Dermawan, A. Salma, Y. i Kurniawat, and T. Octavia Mukhti, “Implementation of the Self Organizing Maps (SOM) Method for Grouping Provinces in Indonesia Based on the Earthquake Disaster Impact,” UNP J. Stat. Data Sci., vol. 1, no. 4, pp. 337–343, 2023, doi: 10.24036/ujsds/vol1-iss4/83.

M. F. Faqih and I. F. Mahdy, “Penerapan Self Organizing Maps dalam Pengelompokkan Provinsi di Indonesia Berdasarkan Aspek Pendidikan,” J. Ris. Stat., pp. 93–102, 2024.

L. R. Iyohu, I. Djakaria, and L. O. Nashar, “Perbandingan Metode K-Means Clustering dengan Self-Organizing Maps (SOM) untuk Pengelompokan Provinsi di Indonesia Berdasarkan Data Potensi Desa,” J. Stat. dan Apl., vol. 7, no. 2, pp. 195–206, 2023, doi: 10.21009/jsa.07208.

M. W. Talakua, Z. A. Leleury, and A. W. Taluta, “Analisis Cluster Dengan Menggunakan Metode K-Means Untuk Pengelompokkan Kabupaten/Kota Di Provinsi Maluku Berdasarkan Indikator Indeks Pembangunan Manusia Tahun 2014,” BAREKENG J. Ilmu Mat. dan Terap., vol. 11, no. 2, pp. 119–128, 2017, doi: 10.30598/barekengvol11iss2pp119-128.

A. C. Benabdellah, A. Benghabrit, and I. Bouhaddou, “A survey of clustering algorithms for an industrial context,” Procedia Comput. Sci., vol. 148, pp. 291–302, 2019, doi: 10.1016/j.procs.2019.01.022.

M. Azmi, A. A. Putra, D. Vionanda, and A. Salma, “Comparison of the Performance of the K-Means and K-Medoids Algorithms in Grouping Regencies/Cities in Sumatera Based on Poverty Indicators,” UNP J. Stat. Data Sci., vol. 1, no. 2, pp. 59–66, 2023, doi: 10.24036/ujsds/vol1-iss2/25.

A. R. Ivansyah, F. Fitri, Y. Kurniawati, and T. O. Mukhti, “Implementation Self Organizing Maps Method In Cluster Analysis Based on Achievement Suistainable Development Goal/SDG’s West Sumatera Province,” UNP J. Stat. Data Sci., vol. 1, no. 5, pp. 480–487, 2023, doi: 10.24036/ujsds/vol1-iss5/118.

N. N. Halim and E. Widodo, “Clustering dampak gempa bumi di Indonesia menggunakan kohonen self organizing maps,” Pros. SI MaNIS (Seminar Nas. Integr. Mat. dan Nilai Islam., vol. 1, no. 1, pp. 188–194, 2017, [Online]. Available: http://conferences.uin-malang.ac.id/index.php/SIMANIS/article/view/62

A. R. Gunawan and Z. Rais, “Applied the Self-Organizing Maps (SOM) Method for Clustering Educational Equity in South Sulawesi,” ARRUS J. Math. Appl. Sci., vol. 4, no. 1, pp. 6–19, 2024, [Online]. Available: https://doi.org/10.35877/mathscience2607

E. Setyowati and S. Mariani, “Penerapan Jaringan Syaraf Tiruan dengan Metode Learning Vector Quantization ( LVQ ) untuk Klasifikasi Penyakit Infeksi Saluran Pernapasan Akut ( ISPA ),” Prism. Pros. Semin. Nas. Mat., vol. 4, pp. 514–523, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/article/view/44356

T. Kohonen, Self-Organizing Maps, vol. 7, no. 2. 1995.

A. B. T. Dananjaya and M. I. Irawan, “Analisis Sentimen pada Komentar terhadap Kebijakan Perjalanan Domestik yang Dikelompokkan Menggunakan Metode Self-Organizing Maps,” J. Sains dan Seni ITS, vol. 12, no. 1, 2023, doi: 10.12962/j23373520.v12i1.107484.

G. A. B. Suryanegara, Adiwijaya, and M. D. Purbolaksono, “Peningkatan Hasil Klasifikasi pada Algoritma Random Forest untuk Deteksi,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 10, pp. 114–122, 2021.

N. Sepriyanti, R. Sani Nahampun, M. H. Zikri, I. Ambarani, and A. Rahmadeyan, “Implementation of K-Means Clustering to Group Poverty Levels in Riau Province,” Semin. Nas. Penelit. dan Pengabdi. Masy., pp. 59–65, 2022, [Online]. Available: https://journal.irpi.or.id/index.php/sentimas

Diterbitkan

2025-10-31

Cara Mengutip

[1]
Wiwil Dzil Izzatil, Chairina Wirdiastuti, dan Syafriandi, “Grouping of Regencies/Cities In West Sumatra Province Based On Economic Development Indicators Using The Self-Organizing Maps (SOM) Algorithm”, MSA, vol. 13, no. 2, hlm. 64–72, Okt 2025.