Comparison of Linear and Robust Discriminant Analysis Methods in the Classification of Malignant and Benign Breast Cancer
DOI:
https://doi.org/10.24252/msa.v13i2.59043Keywords:
Breast Cancer, Discriminant Analysis, WomenAbstract
Breast cancer is one of the most common types of cancer in women worldwide. According to data from the World Health Organization (WHO), breast cancer accounts for about 25% of all cancer cases in women. Early diagnosis has a very important role in determining the patient's survival rate. The purpose of this study is to determine which method is more effective in classifying breast cancer. The methods used in this study are using linear discriminant analysis and robust discriminant. The results showed that the proportion of errors using linear discriminant analysis was 3, 34% while the proportion of errors using robust discriminant analysis was 12, 3% so it can be concluded that the linear discriminant analysis method is more effective in classifying malignant and benign breast cancer.
References
H. Hayati, W. Alwi, and A. Sauddin, “Faktor-Faktor yang Memepengaruhi Tingkat Stres Mahasiswa Prodi Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar dalam Menyelesaikan Tugas Akhir Menggunakan Confirmatory Factor Analysis (CFA),” msa, vol. 9, no. 1, p. 37, Jun. 2021.
M. Hubert, J. Raymaekers, and P. J. Rousseeuw, “Robust discriminant analysis,” WIREs Computational Stats, vol. 16, no. 5, p. e70003, Sep. 2024.
R. A. Johnson and D. W. Wichern, Applied multivariate statistical analysis, sixth edition ed., ser. Pearson modern classics. Upper Saddle River, New Jersey: Pearson, 2019.
M. S. Tjahaya, R. Raupong, and G. M. Tinungki, “Analisis Diskriminan Linear Robust Dengan Metode Winsorized Modified One-Step M-Estimator,” ESTIMASI: Journal of Statistics and Its Application, vol. 3, no. 1, pp. 1–13.
P. K. Illahi, A. R. Viana, M. Permata, and M. Y. Pratama, “Penerapan Algoritma Decision Tree Dan Regresi Linear Untuk Klasifikasi Kanker Payudara,” in SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat, vol. 2. Institut Riset dan Publikasi Indonesia (IRPI), Aug. 2023, pp. 86–92.
[K. K. R. Indonesia, “Rencana Kanker Nasional 2024-2034,” 2024.
Ahmad Zikir, Khalilah Nurfadilah, Irwan, and Adiatma, “Perbandingan Metode Clustering Dengan Menggunakan Metode Average Linkage dan Metode K-Means Pada Industri Kecil dan Menengah Di Kabupaten Wajo,” MSA, vol. 10, no. 2, pp. 57–62, Dec. 2022.
I. Irwan and A. Sauddin, Statistika Multivariat. Makassar: Alauddin University Press, 2021.
N. S. Lestari, K. A. Nugroho, and N. Ngadikun, “Deteksi Tumor Payudara (Breast Benign Diseases) Berdasar Interaksi Eritrosit Akibat Perubahan Ion-Ion Dalam Darah-Edta Menggunakan Spektrofotometer Uv-Vis,” Diff.: J. Phy. Ed. App. Phy., vol. 5, no. 1, pp. 47–61, Jul. 2023.
L. Li, H. Deng, X. Ye, Y. Li, and J. Wang, “Comparison of the diagnostic efficacy of mathematical models in distinguishing ultrasound imaging of breast nodules,” Sci Rep, vol. 13, no. 1, p. 16047, Sep. 2023.
S. M. Malakouti, “Use of Machine Learning to Diagnose Benign and Malignant Breast Tissues with the Best Degree ofAccuracy and in the Shortest Amount of Time,” Chemotherapy: Open Access, vol. 10, no. 6, pp. 1–5, 2022.
A. C. Rencher and W. F. Christensen, Methods of Multivariate Analysis, 1st ed., ser. Wiley Series in Probability and Statistics. Wiley, Jul. 2012.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal MSA ( Matematika dan Statistika serta Aplikasinya)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
