An Analysis of Poverty Using the System-GMM Approach: Evidence from Dynamic Panel Data in East Nusa Tenggara Province
DOI:
https://doi.org/10.24252/msa.v13i2.59056Kata Kunci:
System-GMM, Data Panel Dinamis, Kemiskinan, IPM, Pengangguran, Rasio ElektrifikasiAbstrak
This study focuses on the application of the System-Generalized Method of Moments (System-GMM) statistical approach to analyze the determinants of poverty in 22 districts/municipalities in East Nusa Tenggara Province (NTT) over the period 2015–2019. The GMM method is employed to address issues of endogeneity, heterogeneity, and data persistence that are commonly encountered in regional socio-economic studies. By utilizing internal instruments, this approach enables more valid and robust parameter estimation. The panel data, obtained from the Central Bureau of Statistics, includes variables such as the Human Development Index (HDI), Open Unemployment Rate (OUR), and electrification ratio. The estimation results show that HDI has a negative and significant effect on poverty, with short-term and long-term elasticities of -0.984 and -2.244, respectively. The OUR has a positive and significant effect on poverty, with elasticities of +0.016 (short-term) and +0.036 (long-term), while the electrification ratio also shows a negative and significant effect, with elasticities of -0.035 and -0.081. These findings affirm that the application of the System-GMM method provides a more accurate depiction of the causal relationships among the determinants and supports evidence-based policymaking for poverty alleviation in structurally challenged regions such as NTT.
Referensi
I. B. E. Artika and I. A. K. Marini, “Pengaruh beberapa faktor utama terhadap upaya penurunan tingkat kemiskinan di propinsi nusa tenggara barat, periode 2012–2021,” Ganec Swara, vol. 16, no. 2, p. 1538, Sep. 2022.
M. J. Pandu, Setiawan, and S. P. Rahayu, “Pemodelan persentase kemiskinan di provinsi nusa tenggara timur dengan menggunakan model ekonometrika spasial data panel dinamis,” p. 1314, 2023.
A. S. Khumaerah, “Analisis pengaruh kemiskinan dan tingkat pengangguran terbuka terhadap indeks pembangunan manusia di provinsi banten pada tahun 2018–2021,” Wawasan: Jurnal Ilmu Manajemen, Ekonomi dan Kewirausahaan, vol. 1, no. 1, pp. 111–122, Dec. 2022.
S. Maisaroh, “Pengaruh pengeluaran pemerintah terhadap tingkat kemiskinan melalui indeks pembangunan manusia (IPM) di provinsi jambi tahun 2017–2021,” Science of Management and Students Research Journal (SMS), vol. 4, no. 1, p. 40, May 2023.
R. H. N. Putri and I. Yuliana, “Pengaruh pertumbuhan ekonomi terhadap tingkat kemiskinan dengan pengangguran sebagai mediasi di probolinggo,” Fair Value: Jurnal Ilmiah Akuntansi dan Keuangan, vol. 5, no. 6, pp. 2691–2700, Jan. 2023.
An Analysis of Poverty Using the System-GMM Approach: Evidence from Dynamic Panel Data in East Nusa Tenggara Province — 89
C. Mustika, R. Nurjanah, and S. K. Wulan, “Determinants of poverty and income inequality on the islands of sumatra and java,” JPPI (Jurnal Penelitian Pendidikan Indonesia), vol. 9, no. 3, p. 1533, Sep. 2023.
A. Syahputra and H. Rofizar, “Poverty in community social and economic development perspective,” I-Economics: A
Research Journal on Islamic Economics, vol. 8, no. 2, pp. 103–118, Jan. 2023.
I. Zuhairah, D. Novita, R. Rahayu, A. Asnidar, and A. Ridha, “Analisis determinan tingkat kemiskinan di provinsi jawa
barat,” Cemerlang: Jurnal Manajemen dan Ekonomi Bisnis, vol. 4, no. 1, pp. 9–20, Dec. 2023.
B. S. Zahra, R. D. A. Mevia, R. A. Sona, and M. L. Rohmi, “Pengaruh indeks pembangunan manusia dan tingkat
pengangguran terbuka terhadap kemiskinan di provinsi lampung pada priode 2012–2023,” Jurnal Bisnis, Ekonomi Syariah, dan Pajak, vol. 1, no. 3, pp. 1–15, May 2024.
R. Okui and T. Yanagi, “Panel data analysis with heterogeneous dynamics,” SSRN Electronic Journal, 2015.
W. E. Khasanah, A. Ardiantika, B. Senandung Kala, and V. E. Januarta, “Pengaruh Tingkat Pengangguran Terbuka, Indeks Pembangunan Manusia, Laju Pertumbuhan PDRB Per Kapita dan Upah Minimum Provinsi Terhadap Persentase Penduduk Miskin di Indonesia pada Tahun 2021-2023,” IFIJEB, vol. 4, no. 3, pp. 850–857, Jul. 2024.
I. Suprapto and U. Hasanah, “Energi listrik dan pembangunan manusia: Bukti empiris dari tingkat provinsi di indonesia,” Jurnal Ekonomi dan Kebijakan Publik Indonesia, vol. 9, no. 1, pp. 1–19, Oct. 2022.
E. Biørn, “Panel data dynamics with mis-measured variables: modeling and GMM estimation,” Empir Econ, vol. 48, no. 2, pp. 517–535, Mar. 2015.
X. Sun and R. A. Ashley, “A Transformed System GMM Estimator for Dynamic Panel Data Models,” SSRN Journal, 2014.
K. Hayakawa, “THE ASYMPTOTIC PROPERTIES OF THE SYSTEM GMM ESTIMATOR IN DYNAMIC PANEL
DATA MODELS WHEN BOTH N AND T ARE LARGE,” Econom. Theory, vol. 31, no. 3, pp. 647–667, Jun. 2015.
K. W. Leow and E. C. Tan, “Determinants of Poverty: A Dynamic Panel Data Analysis with Controls for Income Level and Inequality,” MJES, vol. 56, no. 2, pp. 227–242, Dec. 2019.
S. N. Latifah, M. Fathorrazi, L. Yuliati, and D. Yunitasar, “Modeling Poverty Alleviation in Indonesia according to Ibnu
Khaldun Philosophy (an approach to morality in the Qur’an),” pharosjot, no. 105(1), Dec. 2023.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Jurnal MSA (Matematika dan Statistika serta Aplikasinya)

Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.
