Generalized Linear Mixed Model Tree (GLMM-Tree) for The Classification of Direct Cash Transfer Recipients in West Java Province

Authors

  • M. Ichsan Nawawi Universitas Islam Negeri Alauddin Makassar

DOI:

https://doi.org/10.24252/msa.v13i2.62521

Keywords:

GLMM, GLMM-tree, Cash Transfer Recipient

Abstract

Generalized Linear Mixed Model Tree (GLMM-Tree) is a statistical method that combines the concepts of decision tree and Generalized linear mixed model (GLMM). Here are some key advantages including Flexibility in Handling Different Types of Data, Incorporation of Random Effects, Handling of Non-linear Relationships, Interpretability, Variable Selection, Robustness to Outliers, Capturing Interactions, No Need for Parametric Assumptions. The purpose of this study is to compare the GLMM and GLMM-tree methods for the classification of direct cash transfer recipients in West Java with 25890 observations using the GLMM-tree method. Looking at the MSE and RMSE values, GLMM-tree is superior to GLMM for both training and testing data

Author Biography

M. Ichsan Nawawi, Universitas Islam Negeri Alauddin Makassar

Program Studi Matematika

References

A. RUSYANA, K. A. NOTODIPUTRO, and B. SARTONO, “A generalized linear mixed model for understanding determinant factors of student’s interest in pursuing bachelor’s degree at Universitas Syiah Kuala,” J. Nat., vol. 21, no. 2, pp. 72–80, 2021, doi: 10.24815/jn.v21i2.19325.

Ali, R. Khan, N. Ahmad, and I. Maqsood, “Random forests and decision trees,” IJCSI Int. J. Comput. Sci. Issues, vol. 9, no. 5, pp. 272–278, 2012.

B. Mahesh, “Machine Learning Algorithms - A Review,” no. October, 2020, doi: 10.21275/ART20203995.

D. Agustin et al., “Perbandingan Kinerja Binomial Glmm Tree Dan Bimm Forest Comparison Of Binomial Glmm Tree And Bimm Forest Performance For Modeling The Working Status Of The Population,” vol. 11, no. 1, pp. 95–106, 2024, doi: 10.25126/jtiik.20241117531.

Salinas Ruíz, O. A. Montesinos López, G. Hernández Ramírez, and J. Crossa Hiriart, Generalized Linear Mixed Models for Categorical and Ordinal Responses. 2023

M. Casals, M. Girabent-Farrés, and J. L. Carrasco, “Methodological quality and reporting of generalized linear mixed models in clinical medicine (2000-2012): A systematic review,” PLoS One, vol. 9, no. 11, pp. 1–10, 2014, doi: 10.1371/journal.pone.0112653.

M. Fokkema, N. Smits, A. Zeileis, T. Hothorn, and H. Kelderman, “Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees,” Behav. Res. Methods, vol. 50, no. 5, pp. 2016–2034, 2018, doi: 10.3758/s13428-017-0971-x.

M. M. Taye, “Understanding of Machine Learning with Deep Learning :,” Comput. MDPI, vol. 12, no. 91, pp. 1–26, 2023.

M. Fokkema, J. Edbrooke-Childs, and M. Wolpert, “Generalized linear mixed-model (GLMM) trees: A flexible decision-tree method for multilevel and longitudinal data,” Psychother. Res., pp. 1–13, 2020, doi: 10.1080/10503307.2020.1785037.

M. Trees, L. Fontana, C. Masci, F. Ieva, and A. M. Paganoni, “Performing Learning Analytics via Generalized,” 2021.

S. Bayu, K. A. Notodiputro, and B. Sartono, “GLMM and GLMMTree for Modelling Poverty in Indonesia,” Proc. Int. Conf. Data Sci. Off. Stat., vol. 2023, no. 1, pp. 121–131, 2023, doi: 10.34123/icdsos.v2023i1.333.

Zeileis, A., & Hornik, K. (2007). Generalized M-fluctuation tests for parameter instability. Statistica Neerlandica, 61(4), 488–508

Downloads

Published

2025-11-07

How to Cite

[1]
M. I. Nawawi, “Generalized Linear Mixed Model Tree (GLMM-Tree) for The Classification of Direct Cash Transfer Recipients in West Java Province ”, MSA, vol. 13, no. 2, pp. 90–97, Nov. 2025.