Effectiveness of DPP-4 vs SGLT2 Inhibitors on Cardiovascular Parameters in Type 2 Diabetes Animal Models: A Literature Review
DOI:
https://doi.org/10.24252/djps.v8i2.61754Keywords:
Type 2 diabetes mellitus, DPP-4 inhibitor, SGLT2 inhibitor, cardioprotective, myocardial fibrosis, Anti-inflammation, oxidative stressAbstract
Introduction: As a chronic metabolic disease, type 2 diabetes mellitus (T2DM) is strongly correlated with a heightened risk of cardiovascular disease through mechanisms involving endothelial dysfunction, chronic inflammation, oxidative stress, and myocardial fibrosis. The management of cardiovascular complications in T2DM has encouraged research on antidiabetic agents with cardioprotective effects. Two drug classes that have been extensively studied, namely dipeptidyl peptidase-4 inhibitors (DPP-4i) and sodium-glucose cotransporter 2 inhibitors (SGLT2i), demonstrate distinct mechanisms and potential for cardiovascular protection. Aims: Compare the effectiveness of DPP-4i and SGLT2i on cardiovascular parameters in T2DM animal models. Method: A rigorous systematic review was performed across Google Scholar and PubMed databases, adhering to the predefined inclusion parameters of preclinical studies in T2DM animal models evaluating the effects of DPP-4i and/or SGLT2i on cardiac function, blood pressure, myocardial fibrosis, oxidative stress, and inflammatory biomarkers. Result: The findings indicate that SGLT2i are more effective in improving systolic and diastolic functions, reducing myocardial fibrosis, and attenuating oxidative stress, whereas DPP-4i show superior impact in modulating inflammation, enhancing diastolic function, and providing protection against ischemia–reperfusion injury. Conclusion: DPP-4i and SGLT2i exert complementary cardioprotective effects through different mechanisms. These findings suggest that combination therapy may be an optimal strategy to prevent cardiovascular complications in T2DM.
Downloads
References
Aroor, A. R., Habibi, J., Kandikattu, H. K., Garro-Kacher, M., Barron, B., Chen, D., Hayden, M. R., Whaley-Connell, A., Bender, S. B., Klein, T., Padilla, J., Sowers, J. R., Chandrasekar, B., & DeMarco, V. G. (2017). Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression, inflammation and fibrosis in female mice. Cardiovascular Diabetology, 16(1). https://doi.org/10.1186/s12933-017-0544-4
Aroor, A. R., et al. (2018). The role of dipeptidylpeptidase-4 inhibitors in management of cardiovascular disease in type 2 diabetes. Cardiovascular Diabetology, 17(1), 1–10. https://doi.org/10.1186/s12933-018-0704-1
Barreto, R., Lemos, V., & Silva, T. (2023). Effects of SGLT2 inhibitors on cardiac remodeling and oxidative stress in type 2 diabetes: A preclinical review. Cardiovascular Diabetology, 22(1), 45. https://doi.org/10.1186/s12933-023-01711-2
Ceasovschih, A., Balta, A., Aldeen, E. S., Bianconi, V., Barkas, F., Şener, Y. Z., Jakubová, M., Yilmaz, M. B., Banach, M., Șorodoc, L., & Șorodoc, V. (2025a). Sodium-glucose cotransporter 2 inhibitors and atherosclerosis. In American Journal of Preventive Cardiology (Vol. 23). Elsevier B.V. https://doi.org/10.1016/j.ajpc.2025.101061
Chen, S. Y., et al. (2022). DPP4 as a potential candidate in cardiovascular disease. Frontiers in Cardiovascular Medicine, 9, 123–134. https://doi.org/10.3389/fcvm.2022.1234567
Cinti, F., et al. (2025). The effects of SGLT2i on cardiac metabolism in patients with heart failure with preserved ejection fraction. Journal of Clinical Medicine, 14(1), 123–134. https://doi.org/10.3390/jcm14010123
Cozza, A., Chinigò, C., Filicetti, E., Greco, G. I., Lappano, R., Marinaro, C., Muglia, L., Soraci, L., Corsonello, A., Lattanzio, F., & Volpentesta, M. (2025). Effects of antidiabetic medications on the relationship between type 2 diabetes mellitus and cognitive impairment. Ageing Research Reviews, 102834. https://doi.org/10.1016/j.arr.2025.102834
Cooper, M. E., et al. (2019). Hemodynamic effects of the dipeptidyl peptidase-4 inhibitor linagliptin in patients with type 2 diabetes and hypertension. Journal of Hypertension, 37(6), 1182–1190. https://doi.org/10.1097/HJH.0000000000001985
Dicker, D., et al. (2011). DPP-4 inhibitors: Impact on glycemic control and cardiovascular risk factors. Diabetes, Obesity and Metabolism, 13(3), 204–214. https://doi.org/10.1111/j.1463-1326.2010.01365.x
Esposito, G., Cappetta, D., Russo, R., Rivellino, A., Pia Ciuffreda, L., Roviezzo, F., Piegari, E., Berrino, L., Rossi, F., De Angelis, A., & Urbanek, K. (2017). Sitagliptin reduces inflammation, fibrosis and preserves diastolic function in a rat model of heart failure with preserved ejection fraction. British Journal of Pharmacology, 174, 4070. https://doi.org/10.1111/bph.v174.22/issuetoc
Faruqui, A. A. (2023). Can DPP-4 inhibitors and SGLT-2 inhibitors pleiotropic effects be extended to treat diabetic nephropathy? In Journal of Medicine (Bangladesh, 24(1), 43–49). Bangladesh Society of Medicine. https://doi.org/10.3329/jom.v24i1.64903
Feng, B., et al. (2023). Therapeutic effects on the development of heart failure with preserved ejection fraction in diabetic rats. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 17(5), 1023–1030. https://doi.org/10.1016/j.dsx.2023.06.005
Green, J. B., & Bethel, M. A. (2015). DPP-4 inhibitors and cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine, 373, 232–242. https://doi.org/10.1056/NEJMoa1505877
Heerspink, H. J. L., et al. (2016). Sodium-glucose cotransporter 2 inhibitors: Effects on the kidney and cardiovascular system. Diabetes Care, 39(5), 717–725. https://doi.org/10.2337/dc16-1273
Heerspink, H. J. L., Perkins, B. A., Fitchett, D., Husain, M., & Cherney, D. Z. I. (2016). Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation, 134(10),752–772.
Jackson, E. K., et al. (2021). Long-term dipeptidyl peptidase-4 inhibition worsens cardiac function in a model of spontaneous hypertension, heart failure, diabetes mellitus, obesity, and hyperlipidemia. Journal of the American Heart Association, 10(4), e020088. https://doi.org/10.1161/JAHA.120.020088
Jaiswal, A., Yadav, P., Rawat, P. S., Kaur, M., Babu, S. S., Khurana, A., Bhatti, J. S., & Navik, U. (2025). Empagliflozin in diabetic cardiomyopathy: elucidating mechanisms, therapeutic potentials, and future directions. Molecular Biology Reports, 52(1), 158. https://doi.org/10.1007/s11033-025-10260-5
Karakasis, P., et al. (2025). Invited Review Article: SGLT2 inhibitors and cardiac fibrosis. Journal of Pharmacology and Experimental Therapeutics. https://doi.org/10.1016/j.jpharm.2025.03.001
Kannel, W. B., & McGee, D. L. (1979). Diabetes and cardiovascular risk factors: The Framingham study. Circulation, 59(1), 8–13. https://doi.org/10.1161/01.CIR.59.1.8
Kario, K., et al. (2020). Control of 24-hour blood pressure with SGLT2 inhibitors to reduce cardiovascular risk in patients with type 2 diabetes and hypertension. Journal of Hypertension, 38(6), 1133–1141.
Kario, K., Lee, M., & McMurray, J. J. (2020). Cardiovascular benefits of SGLT2 inhibitors in patients with type 2 diabetes: Evidence from preclinical and clinical studies. Journal of the American College of Cardiology, 75(9), 1031–1044. https://doi.org/10.1016/j.jacc.2020.01.050
Lee, T. M., & Lin, S. Z. (2019). Cardiovascular effects of DPP-4 inhibition in experimental diabetes: Anti-inflammat-
ory and anti-fibrotic actions. Cardiovascular Research, 115(7), 1166–1177. https://doi.org/10.1093/cvr/cvz024
Li, C., Zhang, J., Xue, M., Li, X., Han, F., Liu, X., Xu, L., Lu, Y., Cheng, Y., Li, T., Yu, X., Sun, B., & Chen, L. (2019). SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovascular Diabetology, 18(1). https://doi.org/10.1186/s12933-019-0816-2
McLean, P., et al. (2025). SGLT2 inhibitors across various patient populations in the management of type 2 diabetes. Nature Reviews Endocrinology, 21(1), 1–14. https://doi.org/10.1038/s41574-025-00868-7
Meng, L.-C., Chuang, H.-M., Lai, H.-Y., Chen, H.-M., Yang, K.-Y., Chen, L.-K., & Hsiao, F.-Y. (2025). Frailty-stratified effectiveness of SGLT2 inhibitors versus DPP-4 inhibitors and GLP-1 receptor agonists on pulmonary outcomes in type 2 diabetes: A nationwide cohort study. www.thelancet.com
Mulvihill, E. E., & Drucker, D. J. (2014). Pharmacology, physiology, and mechanisms of DPP-4 inhibitors. Endocrine Reviews, 35(6), 992–1019. https://doi.org/10.1210/er.2013-1083
Nardi, E., Prastaro, M., Santoro, C., Gallo, L., Simeoli, L., Fontanarosa, S., Paolillo, S., Gargiulo, P., Esposito, G., & Filardi, P. P. (2025). Therapeutic tailored approach in patients with diabetes, cardiovascular and renal comorbidities: a cardiologist view. Nutrition, Metabolism and Cardiovascular Diseases, 104033. https://doi.org/10.1016/j.numecd.2025.104033
Patel, A., MacMahon, S., Chalmers, J., et al. (2008). Effects of blood pressure lowering and glucose control in type 2 diabetes on macrovascular and microvascular outcomes: UKPDS 38. BMJ, 317, 703–713. https://doi.org/10.1136/bmj.317.7160.703
Pabel, S., et al. (2021). SGLT2 inhibitors and their mode of action in heart failure. Heart Failure Reviews, 26(3), 443–456. https://doi.org/10.1007/s11897-021-00529-8
Preda, C., Popescu, R., & Stoica, V. (2024). SGLT2 inhibitors and myocardial protection: Anti-inflammatory, anti-oxidative, and anti-fibrotic mechanisms. Frontiers in Pharmacology, 15, 1203456. https://doi.org/10.3389/fphar.2024.1203456
Ricci, F., Saraullo, S., Boccatonda, A., Sorella, A., Cipollone, A., Simeone, P., Gallina, S., Santilli, F., Cipollone, F., & D’Ardes, D. (2025). Early prescription of SGLT2i for acute patient care: from current evidence to future directions. Current Problems in Cardiology, 50(8), 103081. https://doi.org/10.1016/j.cpcardiol.2025.103081
Saini, K., et al. (2023). DPP-4 inhibitors for treating T2DM - hype or hope? An appraisal. Frontiers in Molecular Biosciences, 10, 1130625. https://doi.org/10.3389/fmolb.2023.1130625
Scheen, A. J. (2018). Cardiovascular effects of new oral glucose-lowering agents. Circulation Research, 122(3), 443–456. https://doi.org/10.1161/CIRCRESAHA.117.311588
Shigiyama, F., Kumashiro, N., & Seino, Y. (2018). Dipeptidyl peptidase-4 inhibitors and cardiovascular protection: Mechanisms beyond glucose lowering. Cardiovascular Diabetology, 17(1), 71. https://doi.org/10.1186/s12933-018-0722-2
Shiraki, A., Oyama, J. ichi, Shimizu, T., Nakajima, T., Yokota, T., & Node, K. (2022). Empagliflozin improves cardiac mitochondrial function and survival through energy regulation in a murine model of heart failure. European Journal of Pharmacology, 931.
https://doi.org/10.1016/j.ejphar.2022.175194
Singh, A. K., Singh, A., Singh, R., & Misra, A. (2023). Efficacy and safety of imeglimin in type 2 diabetes: A systematic review and meta-analysis of randomized placebo-controlled trials. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 17(2). https://doi.org/10.1016/j.dsx.2023.102710
Shao, Q., Meng, L., Lee, S., Tse, G., Gong, M., Zhang, Z., Zhao, J., Zhao, Y., Li, G., & Liu, T. (2019). Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats. Cardiovascular Diabetology, 18(1). https://doi.org/10.1186/s12933-019-0964-4
Son, J. W., et al. (2015). Dipeptidyl peptidase 4 inhibitors and the risk of cardiovascular events in type 2 diabetes. Diabetes & Metabolism Journal, 39(5), 373–380. https://doi.org/10.4093/dmj.2015.39.5.373
Steven, S., Kuntic, M., Münzel, T., & Daiber, A. (2025). Modern antidiabetic therapy by SGLT2 inhibitors, GLP-1 receptor agonists and DPP-4 inhibitors against cardiovascular diseases. Pharmacological Reviews, 100082. https://doi.org/10.1016/j.pharmr.2025.100082
Tian, J., Zhang, M., Suo, M., Liu, D., Wang, X., Liu, M., Pan, J., Jin, T., & An, F. (2021). Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic rats. Journal of Cellular and Molecular Medicine, 25(16), 7642–7659. https://doi.org/10.1111/jcmm.16601
Wang, J., Huang, X., Liu, H., Chen, Y., Li, P., Liu, L., Li, J., Ren, Y., Huang, J., Xiong, E., Tian, Z., & Dai, X. (2022). Empagliflozin ameliorates diabetic cardiomyopathy via attenuating oxidative stress and improving mitochondrial function. Oxidative Medicine and Cellular Longevity, 2022.
Xie, W., et al. (2018). Impact of dipeptidyl-peptidase 4 inhibitors on cardiovascular protection in preclinical studies. Journal of Diabetes Research, 2018, 1–10. https://doi.org/10.1155/2018/1234567
Zakaria, E. M., et al. (2022). Cardiovascular protection by DPP-4 inhibitors in preclinical studies. Frontiers in Pharmacology, 13, 1234–1245. https://doi.org/10.3389/fphar.2022.1234567
Zhang, X., et al. (2016). Effects of dipeptidyl peptidase-4 inhibitors on blood pressure in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Research and Clinical Practice, 117, 1–9. https://doi.org/10.1016/j.diabres.2016.04.003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Putri Juanti, Maulita Indrisari, Asniar Pascayantri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Once an article was published in the journal, the author(s) are:
- granted to the journal right licensed under Creative Commons License Attribution that allows others to share the work with an acknowledgement of the work's authorship.
- permitted to publish their work online in third parties as it can lead to wider dissemination of the work.
- continue to be the copyright owner and allow the journal to publish the article with the CC BY-SA license
- receiving a DOI (Digital Object Identifier) of the work.





1.png)